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Two-step magnetization in a spin-chain system on the triangular lattice:
Wang-Landau simulation
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The Wang-Landau algorithm is used to study the thermodynamic and magnetic properties of triangular
spin-chain system based on two-dimensional Ising model in order to understand the magnetic-order dynamics
in CazCo,04 compound. The calculated results demonstrate that the equilibrium state of the rigid spins
produces the two-step magnetization curve at low temperature even when the random-exchange term is con-
sidered. This work indicates that the four-step magnetization behavior observed experimentally must be due to

the nonequilibrium magnetization.
DOI: 10.1103/PhysRevB.79.172405

During the past few years, spin-chain system Ca;Co0,0q¢
has drawn considerable attention from both experimental and
theoretical points of view due to their unique magnetic
behaviors.!"!'” As revealed experimentally, Ca;Co,04 has a
rhombohedral structure composed of Co,0Og4 chains running
along the c axis of the corresponding hexagonal cell. The Ca
ions are situated between them and are not involved in mag-
netic interactions.! These chains are built by alternating,
face-sharing CoOg trigonal prisms and CoOg octahedral.
Each chain is surrounded by six equally spaced chains, form-
ing a triangular lattice on the ab plane that is perpendicular
to the chains along the ¢ axis.

The most intriguing feature for such a spin-chain system
is a steplike magnetization (M) as a function of external
magnetic field (B) applied along the chains. Experimentally,
two steps are observed in the temperature (7) range of 10-25
K. Close to B=0, M reaches the first plateau at M=M,/3
(where M|, is the saturated magnetization). Then the plateau
stretches up to B=3.6 T where M springs up to M. Experi-
mentally, when 7<<10 K, the first step at M/3 splits into
three equidistant steps at a slow magnetic-field sweep rate,
thus constituting a four-step magnetization pattern. The ori-
gin of such four-steplike magnetization behavior has been
extensively studied most recently, and it is still a matter of
debate.”™

For Ca;Co,04, because the intrachain-ferromagnetic
(FM) interaction is much stronger than the interchain-
antiferromagnetic (AFM) coupling, the chains can be as-
sumed to be in two ordered states (spin-up or spin-down) at
low T. Based on this basic assumption, Kudasov developed a
two-dimensional (2D) Ising model to investigate the steplike
magnetization by an analytical method regarding a spin
chain as a large rigid spin and assuming a quench at 7=0.°
By this theory at the fourth approximations, four equidistant
steps can be produced in accordance with experimental
curves. Similar model was proposed and employed for ex-
ploring the static magnetization behavior of Ca;Co,04 using
Monte Carlo simulation,'>!® and the four-step behavior, con-
sistent with experimental observation, was confirmed when a
random-exchange term was taken into account.
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Nevertheless, recent experiments seemed to question this
four-step magnetization once more. It was observed that the
number of the steps in the magnetization curve strongly de-
pends on the sweep rate of magnetic field B. As the sweep
rate is decreased, some of the magnetization steps disappear.
This phenomenon shows that the four-step magnetization
curve may be due to the nonequilibrium magnetization dy-
namics. Most recently, Kudasov et al.'! performed the simu-
lation of the nonequilibrium evolution by means of a
Glauber-type form of the spin-flip probability and investi-
gated the dependence of the magnetization curves on the
magnetic-field sweep rate in good agreement with the experi-
mental data. In addition, the influence of metastable states on
the magnetic behavior in CazCo,04 compound has been
studied in detail using the same model.!* As the relaxation
time increases, the first three plateaus observed at low 7 tend
to merge into one step, likely generating eventually a two-
step pattern. These works seem to indicate that the spin-chain
system of triangular lattice under B at low T is easily trapped
into metastable states from equilibrium and probably the
equilibrium state of the magnetization dynamics is not of
four-step pattern.

Therefore, it is still an unsolved issue to demonstrate
this equilibrium pattern in order to understand the magnetic
behavior of the system. However, conventional Metropolis
algorithm of Monte Carlo simulation based on local spin
flip often fails to relax into the equilibrium state because
the model we studied here contains the frustration in
the exchange interaction due to the triangular lattice geom-
etry. To overcome this difficulty, one can appeal to the
Wang-Landau (WL) algorithm which enables the system to
avoid trapping to a metastable state because this algorithm is
very powerful to reach the ground state (equilibrium state).
Since it was proposed in 2001,'%!% the WL algorithm has
been successfully applied to various problems, such as com-
plex spin models,>>%? quantum systems,?>* fluids,?>® and
proteins.?’?8 However, as far as we know, there has been no
work on the magnetic properties of Ca;Co,0O¢ approached by
the WL algorithm in any quantitative sense. In this article,
we shall use the standard WL algorithm to calculate the ther-
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TABLE 1. Parameters chosen for the simulation.

Parameter Value Parameter Value
kg(J/K) 1.3807 X 1073 J(J) 3.592% 1075
up(J/T) 9.274 X 107 S 32

g 2

modynamic and magnetic properties of Ca;Co0,0q in order to
understand the complex magnetic order at the equilibrium
state.

Based on the rigid-chain model,’ the three-dimensional
issue of Ca;Co,04 is reduced to the 2D AFM triangular Ising
model?

H=J2 5,5S,- Bugg> Sy (1)

[m,n] m

where J>0 is the AFM-interchain coupling, S,, is the effec-
tive spin moment of a spin chain at the site m with the value
S, B is an external magnetic field applied along the direction
of up-spin chains (+c axis), g is the Lande factor, and uy is
the Bohr magneton; [m,n] denotes the summation over all
the nearest-neighbor pairs.

For investigating the magnetic properties of a system with
the WL algorithm, one has to calculate the density of state
(DOS) g(E,M) in energy and magnetization space where E
denotes the energy of a given spin configuration of the
Hamiltonian without external field. Following the pathbreak-
ing work of Wang and Landau,'®!® we choose the simulation
procedure stated in Refs. 18 and 19.

At the very beginning, we set all entries to the DOS
g(E,M)=1 and a histogram RH(E,M)=0 for all possible
(E,M) states. Then we begin our random walk in the energy
and magnetization space by flipping spins randomly. The
transition probability from state (E;, M) to state (E,, M) is

8(E M) 1]
g(EsMy)" |

where states (E,,M;) and (E,,M,), respectively, denote en-
ergies and magnetizations before and after a spin is flipped.
Each time a new state (E;,M;) is visited, we modify the
existing DOS by a modification factor f; i.e., g(E;,M;)
=g(E;,M,)f,. In this Brief Report an initial modification fac-
tor of fy=exp(1l), which allows us to reach all possible en-
ergy levels quickly, is used. If the random walk rejects a
possible move and stays at the same state (E,M), we also
modify the existing DOS by the same modification factor.
Each time, the histogram RH(E;,M;) (the number of visits)
in the energy and magnetization space is accumulated. When
the histogram becomes “flat,” we reduce the modification
factor to a finer one according to the recipe fi, ;= f,-” 2 reset
the histogram RH(E,M)=0, and begin the next random
walk. After finishing the initial run we perform 27 cycles,
resulting in a final modification factor of 1.000 000 007 45.
In our simulations, the flat histogram means that histogram
RH(E,M) for all possible (E,M) is not less than 80% of the
average histogram. In addition, the histograms are generally
checked at each 10 000 Monte Carlo sweeps.

p(E|,M, HEz,Mz)=miﬂ{ (2)
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FIG. 1. (Color online) Evaluated DOS In[g(E,M)] for
Ca3C0,04 compound and curves in (b)—(d) represent the cross-
sectioned In[g(E,M)] at various energy values E.

After g(E, M) has been obtained, we calculate the thermo-
dynamic and magnetic quantities at any 7 and B. For ex-
ample, the internal energy can be calculated by

> Hg(E,M)exp(— HlkyT)

U(T.B) = 22

> g(E,M)exp(— HlkgT)
EM

= <H>T,B- (3)

The magnetization M(T,B) as a function of T and B can
be calculated from

>, Mg(E,M)exp(— HikgT)

M(T.B) = "= )

> g(E,M)exp(- HikgT)
EM

Our simulation is performed on LX L triangular lattices
with period-boundary conditions. Unless stated otherwise,
L=12 is chosen in this Brief Report. The values of these
parameters for the simulation are listed in Table I, and these
parameters have been employed for a number of earlier the-
oretical and simulation works.!!:14-16

The simulated DOS g(E,M) for Ca3;Co,04 compound is
presented in Fig. 1(a). In the low-energy range (E<0), as
shown in Fig. 1(b), g(E,M) shows a parabolic shape for a
given energy value and reaches its single maximum value
at M=0. The calculated DOS at the lowest energy
Enin(~=26.64) is quite considerable, indicating that the
ground state is thus highly degenerate and can be any of a
number of spin-frustrated configurations with the same en-
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ergy E.;, (within the simulation uncertainty). The similar
behavior can be observed for some other systems such as
Mo,,Fe;.?? In the intermediate energy range (0<E/kg
<62.9 K), as shown in Fig. 1(c), the single maximum of
g(M) at M=0 is replaced by a relatively flat profile. It can be
observed that the profile becomes wide with increasing E and
eventually concave at E/kz~ 37 K. Furthermore, the pos-
sible M range is divided into two separate subranges from
M =0 when E exceeds 62.9 K. This behavior may stem from
the fact that the model has discontinuous degrees of freedom.
The two subranges shrink themselves when E further in-
creases, as shown in Fig. 1(d). At the highest energy, only
two M states (M=1,—1) which correspond to the ferromag-
netic orders are possible. Note that the calculated DOS
g(E,M) covers all possible (E,M) space, so the thermody-
namic and magnetic properties of the system can be accu-
rately evaluated with the former expressions.

The calculated M as a function of 7 and B is shown in
Fig. 2. The magnetization curves clearly show two steps at
low temperature (7<<20 K). When field B increases from
zero, M rapidly reaches the first plateau (M~ M,/3) and
then switches to M, above B~3.6 T. As it was reported in
Ref. 9, the first plateau results from the homogeneous ferri-
magnetic order of the spin chains due to the AFM interaction
between the chains. As temperature is raised, the steps are
progressively washed out due to the thermal activation.
When 7>40 K, the first step disappears completely and the
M-B relation becomes linear. Therefore, our simulation re-
sult convincingly demonstrates that the equilibrium state of
the perfect triangular lattice of the rigid spins does produce
the two-step magnetization curve at low temperature.

It is understood that for realistic materials significant ran-
dom field as background of the lattice interactions may be
available. Now we consider the effect of inhomogeneity in
the system. For such a purpose, a random-exchange term
A, . is taken into account. The Hamiltonian can be written as
follows:

H= 2 (J+JA)S,S, — Bitsg > S (5)

[m,n] m

with
Am,n = Span - RAMm,n’ (6)

where RAM,,, is the random number in [-1,1] and span
represents the magnitude of the random-exchange term. Such
a strategy was extensively accepted for random fields.

In order to compare with earlier work,'>1¢ a random-
exchange term with its magnitude span=0.15 is considered
first. Figure 3 shows the comparison of the magnetization
and internal energy at various T as a function of B for the
WL and Metropolis simulations. The two simulations are
well coincident with each other at 7=10 K, as clearly shown
in Figs. 3(a) and 3(b), indicating that the Metropolis algo-
rithm also allows the equilibrium state to be reached at rel-
evant T just as the WL method does. However, there is a big
discrepancy between the two simulations below B=3.6 T at
T=2 K which is shown in Figs. 3(c) and 3(d). The M,/3
step splits into three equidistant steps in the Metropolis simu-
lation while it keeps invariant in the WL simulation. The
relevant internal energies obtained from the Metropolis

PHYSICAL REVIEW B 79, 172405 (2009)

FIG. 2. (Color online) Simulated M/M,, as a function of 7 and
B.

simulation are higher than the corresponding WL simulation
results, as clearly shown in Fig. 3(d), allowing us to argue
that the four-step M(B) curve must attribute to the nonequi-
librium states. The equilibrium state of the rigid spins can
only produce the two-step magnetization curve at 7=2 K
even when the random-exchange term is considered.

Now we can check the dependence of the steplike mag-
netization feature on the inhomogeneity (random-exchange
term) probably available in realistic systems, and the simu-
lated results are presented in Fig. 4(a), where M as a function
of B at T=2 K upon various span values are plotted in order
to understand the effect of the random exchange. One can
find that the random-exchange term only smoothens the
jumps but cannot assist in generating additional steps. The
smoothness of the M(B) curves may be due to the inhomo-
geneous states induced by the random exchange. As span
arises from 0 to 0.3, the borders between the steps become
more and more faint. A similar result can also be found in
earlier work in which a mean-field approach is employed to
study the magnetic properties of the triangular lattice.'®

At last, we come to check the finite-lattice-size effect in
our simulations in order to exclude the artificial facts due to
the finite lattice size. The simulated M(B) for different L at
T=2 K upon span=0.15 are plotted in Fig. 4(b). It is dem-
onstrated that the finite-size effect on the magnetization of
the system is nearly negligible and our conclusion is reliable.

Our calculated results can be qualitatively explained by
means of the spin-configuration analysis. In such a magnetic
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FIG. 3. (Color online) Comparison of (a),(c) M/M, and (b),(d)
U/N as a function of B calculated from WL method with computed
using the Metropolis algorithm at 7=10 K and 7=2 K.
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FIG. 4. (Color online) Simulated curves of M/M,, as a function
of B (a) for different spans and (b) for various lattice sizes L at T
=2 K.

system, M is determined by the competition between the
exchange interaction and applied magnetic field. When the
random-exchange term is ignored, antiferromagnetic con-
figurations, 11| (spin-up, spin-up, and spin-down) and 7 |
appear with the same probability for a triangular sublattice at
B=0, leading to the zero M. However, a weak B breaks the
infinite degeneracy, leaving the ground state 77| corre-
sponding to M=M/3.>° Such a regular ferrimagnetic struc-
ture is formed by taking one spin-down surrounding with six
chains of spin-up.!> As the static magnetic energy increases
to be comparable with the interaction energy, the central
down spin may flip. The critical field can be estimated to be
6JS/(gup)=3.6 T. So when B>3.6 T, the ferromagnetic
state 717 is formed. When the random-exchange term is
considered, the perfect 17T | state may be partially destroyed
near the critical fields (B=0 and 3.6 T), leading to the
smoothness of the M(B) curve.
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The present work seems to reveal once more that geo-
metrically frustrated spin systems such as the spin-chain
Ca;3Co,0¢ offer very complicated spin configuration which is
very sensitive to external fluctuations. Although this argu-
ment has been made repeatedly, a reliable experimental ap-
proach of the fascinating magnetic phenomena in these frus-
trated systems becomes extremely challenging in terms of
understanding their ground state or equilibrium states. The
magnetic property of Ca;Co,0g, as an example, has attracted
attention for many years, but clear knowledge of its equilib-
rium magnetization remained ambiguous before the present
WL simulation.

In conclusion, we have calculated the magnetization of
triangular spin-chain system as a function of temperature and
applied magnetic field using the WL method. Our simulation
demonstrates that the equilibrium state of the rigid spins pro-
duces the two-step magnetization curve at low temperature
regardless of the random-exchange term being taken into ac-
count or not. The random-exchange term only smoothens the
jumps but cannot result in additional steps. It is indicated that
the four-step magnetization curve observed in experiments
must be due to the nonequilibrium magnetization.
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